NEET 2020 All INDIA TEST SERIES _ 31.03.2020 FULL TEST - I											IV								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4	2	4	2	4	3	1	3	1	4	3	2	4	4	4	1	3	4	3	2
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
4	2	2	2	2	1	4	4	3	3	4	3	1	4	1	3	4	4	2	3
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	4	4	1	4	1	3	2	3	2	4	3	3	4	2	1	2	4	3	3
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
1	3	4	2	1	3	4	3	2	2	1	1	4	3	4	3	1	2	4	3
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
2	1	2	4	2	1	1	4	2	2	2	1	4	3	4	4	2	2	1	1
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
3	3	1	1	1	1	3	2	4	3	3	4	1	3	4	3	4	1	1	4
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
3	2	3	4	4	1	3	3	3	4	2	1	3	4	2	3	4	1	1	3
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
4	3	3	4	2	2	4	4	1	4	3	3	2	4	4	4	2	4	4	2
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
2	2	3	3	2	2	4	3	3	4	2	2	4	4	4	1	4	3	4	3

Explanation

- 01. (4)1 astronomical unit $= 1.496 \times 10^{11}$ m All the other unit conversion are correct 02. (2) The speed in general is greater than the
- 02. (2) The speed in general is greater than the magnitude of the velocity All the other statements are correct.
- 03. (4)
- 05. (4) Among the given quantities electric potenital is a scalar quantityt whereas all others are vector quanties
- 06. (3) Motion with constant momentum along a staright line implies $\vec{p} = cosntant$

So, according to Newton's 2nd law

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d}{dt}$$
 constant =0

- 07. (1) Newtons laws of motion hold good for inertial frame. All the other statements are correct.
- 08. The kinetic energy (K) and momentum)p) of a

body are related as

$$K = \frac{P^2}{2m}$$
 or $p = \sqrt{2mK}$

where m is the mass of the body

$$\therefore \frac{p_1}{p_2} = \frac{\sqrt{2m_1K_1}}{\sqrt{2m_2K_2}} = \sqrt{\frac{m_1K_1}{m_2K_2}}$$

But
$$K_1 = K_2$$
 (given)

$$\therefore \frac{p_1}{p_2} = \sqrt{\frac{m_1}{m_2}}$$

09. If two bodies of masses m_1 and m_2 moving with the same velocities are stopped by the same force, then the ratio of their stopping distances is

$$\frac{\mathsf{d}_{\mathsf{s}_1}}{\mathsf{d}_{\mathsf{s}_2}} = \frac{\mathsf{m}_1}{\mathsf{m}_2}$$

Here, $m_1 = 1$ kg and $m_2 = 2$ kg

NEET 2020

ALL INDIA TEST SERIES _ 31.03.2020

FULL TEST - IV

- $\therefore \frac{\mathsf{d}_{\mathsf{s}_1}}{\mathsf{d}_{\mathsf{s}_2}} = \frac{1\mathsf{k}\mathsf{g}}{2\mathsf{k}\mathsf{g}} = \frac{1}{2}$
- 10. (4) Let m be the mass of each disc. The moment of inertia of disc A is

$$I_A = \frac{1}{2}mr^2$$

and that of disc B is

$$I_{B} = \frac{1}{2}m(2r)^{2} = 4\left(\frac{1}{4}mr^{2}\right) = 4I_{A}$$
 (using (i))

or $I_A = \frac{1}{4}I_B$

- 11. (3) Radius of gyration is a scalar quantity.
- 12. (2) Orbital velocity of earth satellite is

$$v_0 = \sqrt{\frac{GM}{R+h}} = \sqrt{\frac{gR^2}{R+h}} \qquad \qquad \left(\because g = \frac{GM}{R^2} \right)$$

Thus it is independent of the mass of the satellite (m) but depends on the mass of the earth (M), radius of the earth (R), acceleration due to gravity (g) and height (h) of the satellite from the surface of earth.

 (4) Gravitational potential energy of a body of mass m at a height (h) of the satellite from the surface of earth is

$$U = -\frac{GMm}{(R+h)}$$

- (4) When the stones are unloaded into water, the water level falls becasue the volume of the water displaced by stones in water will be less than the volume of water displaced when stones in hte boat
- 15. (4) According to definition of Young's modulus

$$Y = \frac{F/A}{\Delta L/L} = \frac{F/\pi r^2}{\Delta L/L}$$

: Elongation produced in a wire is

$$\Delta L = \frac{FL}{\pi r^2 Y}$$

Where L is the length of the wire, r is its radius and F is the stretching force.

As both wires are of same length (L) and same mateiral i.e., Y is same and produce equal elogations

$$\therefore \Delta L_1 = \Delta L_2$$
$$\frac{FL}{\pi r^2 Y} = \frac{fL}{\pi (2r)^2 Y}$$

$$\frac{F}{r^2} = \frac{f}{(2r)^2}$$
$$\frac{F}{f} = \frac{r^2}{(2r)^2} = \frac{r^2}{4r^2}$$

16. (1) The terminal velocity of a rain is

$$V_{t} = \frac{2r^{2}(\rho - \sigma)g}{5\eta}$$

Thus $v_t \propto r^2$

(2) water proof agents increase the angle of contact between the water and fibres

(3) Detergents decrease the surface tension of water

(4) Hydraulic machine work one the Pascal's law.

17. (3) According to first law of thermodynamics $\Delta Q = \Delta U + W$

In an adiabatic process, $\Delta Q = 0$

$$\therefore 0 = \Delta U + W$$

or $\Delta U = -W$

18. (4) If Q_1 is the energy input and Q_2 is the energy rejected to the sink, then work done $W = Q_1 - Q_2$

Dividing by Q_1 on both sides, we get

$$\frac{\mathsf{W}}{\mathsf{Q}_1} = 1 - \frac{\mathsf{Q}_2}{\mathsf{Q}_1} \text{ or } \frac{\mathsf{Q}_2}{\mathsf{Q}_1} = 1 - \frac{\mathsf{W}}{\mathsf{Q}_1}$$

As $Q_1 = 3W$ (given)

$$\therefore \frac{Q_2}{Q_1} = 1 - \frac{W}{3W} = 1 - \frac{1}{3} = \frac{2}{3}$$

Thus the fraction of energy rejected to the sink

is
$$\frac{2}{3}$$
.

19. (3) Since temperature is not specifed, $v_{rms} \propto \sqrt{P}$

So,
$$\frac{V_{rms(P)}}{V_{rms(2P)}} = \sqrt{\frac{P}{2P}} = \frac{1}{\sqrt{2}}$$
]

Note : If temperature remains constant, ther rms speed of an ideal gas is independent of the

----(i)

pressure of the gas. So $V_{rms(P)}$: $V_{rms(2)} = 1:1$

20. Let L be length of the pendulum ∴ Its time period on earth is

$$T_e = 2\pi \sqrt{\frac{L}{g_e}}$$

NEET 2020

ALL INDIA TEST SERIES _ 31.03.2020

and that on the planet is

$$T_{p} = 2\pi \sqrt{\frac{L}{g_{p}}}$$
$$\frac{T_{p}}{T_{e}} = \sqrt{\frac{g_{e}}{g_{p}}}$$

21. (4) The frequency remains constant in simple harmonic motion

----(ii)

- 22. (1) Sound waves can't be polarized
 - (2) they can exhibit diffraction.
 - (3) They are longitudinal in nature
 - (4) They travel faster in liquids than in air
- 23. (2) Let L_c and L₀ be the lengths of the closed and then open organ pipes respectively. The frequency of third harmonic of the closed organ pipe is

$$v_{3c} = \frac{3V}{4L_{C}}$$

and that of the open organ pipe is

$$v_{3c} = \frac{3V}{2L_c}$$

where v is the speed of the sound

As $v_{3c} = v_{30}$ (given)

$$\therefore \frac{3\mathsf{v}}{4\mathsf{L}_{\mathsf{c}}} = \frac{3\mathsf{v}}{2\mathsf{L}_0} \text{ or } \frac{\mathsf{L}_{\mathsf{c}}}{\mathsf{L}_0} = \frac{1}{2}$$

24. (2) Here,

Mass of the particle, $m = 1.96 \times 10^{-15} \text{kg}$

Distance between the plates, d = 0.02mPotenital difference between the plates,

d = 0.02m

The electric field between the plates is

$$E = \frac{V}{d} = \frac{400V}{0.02m} = 2 \times 10^4 Vm^{-1}$$

25. Let the point P be at the distance x from the centre of A where the electric field intensity is zero.

$$\therefore$$
 At point P, E_A = E_B

$$\frac{1}{4\pi\varepsilon_0}\frac{9C}{x^2} = \frac{1}{4\pi\varepsilon_0}\frac{4C}{(10m-x)^2}$$

$$\frac{9}{x^2} = \frac{4}{(10m - x)^2}$$

$$3x = \frac{2}{10m - x}$$
 or $30m - 3x = 2x$

$$5x = 30m$$
 or $x = \frac{30m}{5} = 6m$

- 26. (1) Charge is a scalar quantity. All the other statements are correct.
- 27. (3) When the rate of flow charge through a metallic conductor of non uniform cross section is uniform, then current remains constant along the conductor while current density, electric field, electrical potential and drift velocity are not constans and all vary inversely with area of cross section.
- 29. (3) According to Ohm's law,

: The slope of the given graph is

$$=\frac{I}{V}=\frac{1}{R}$$
 = reciprocal of resistance

- 31. (4) the magnetization of a diamaganetic material is independent of the temperature.
- 32. (3) Let r be the radius of the coil.

$$\therefore B = \frac{\mu_0 I}{2r}$$

When the coil is bent into small circular coil of n turns of radius r', then

$$n2\pi r' = 5\pi r \text{ or } r' = \frac{r}{n}$$
 ----(i)

$$B' = \frac{\mu_0 n I}{2r'} = \frac{\mu_0 n I}{2(r/n)} = \frac{n^2 \mu_0 I}{2r} \quad \text{(using iii))}$$

Dividing eqn. (ii) by eqn. (i) we get

$$\frac{\mathsf{B'}}{\mathsf{B}} = \frac{\mathsf{n}^2}{1}$$

 (1) According to Faraday's law of induction, the magnitude of the magnitude of the induced emf in the circuit is

$$\varepsilon \mid = \frac{\Delta \phi}{\Delta t}$$

As R is the resistance of the circuit, so induced current is

$$I = \frac{|\epsilon|}{R} = \frac{\Delta \phi}{R\Delta t}$$

$$\Delta t = I\Delta t = \left(\frac{\Delta\phi}{R\Delta t}\right)\Delta t = \frac{\Delta\phi}{R}$$

NE	ET 2020 ALL INDIA TEST SERI	ES _ 3'	1.03.2020 FULL TEST - IV
34.	The resonant frequency of an LCR series circuit is	41.	(1) Since hte half-life is 2 hours, the intensity of the radiation falls by a factor of 2 every 2
	$\upsilon_{r} = \frac{1}{2\pi\sqrt{LC}}$		hours. In 12 hours, it will fall a factor of $(2)^6 = 64$. Thus, in 12 hours, the intensity attains the safe
	When the capacitance is changed to C'(= 4C) and inductance changed to L' the new resonant frequency becomes	42. 43.	 (4) Atom bomb is based on nuclear fission whereas all other are based on nuclear fusion. (4) The nuclear mass density is indpendent of mass number (A). Thus the approximate ratio of
	$\upsilon_r' = \frac{1}{2\pi\sqrt{L'C'}}$		nuclear mass densities of $^{197}_{79} \text{Au}$ and $^{107}_{47} \text{Ag}$
	But $\upsilon_l = \upsilon_r$ (given)	44.	nuclei is 1:1. (1)
	$\therefore m \ \frac{1}{2\pi\sqrt{L'C'}} = \frac{1}{2\pi\sqrt{LC}}$ Squaring both sides, we get	45.	 The outpute is high only when both input A and B are high. So the logic gate is AND. (4) Acceptor level in p-type semiconductor lies nearer to the valence band.
35.	$\frac{1}{L'C'} = \frac{1}{LC} \qquad \therefore L' = \frac{LC}{C'} = \frac{LC}{4C} = \frac{L}{4}$ (1) Changing magnetic fields can set up current loops in nearby metal (any conductor) bodies. The dissipate electrical energy as heat. Such currents are called eddy currents.	46.	(1) $\frac{\lambda_{\alpha}}{\lambda_{\beta}} = \frac{R_{H}}{R_{H}} \frac{\left(\frac{1}{4} - \frac{1}{9}\right)}{\left(\frac{1}{4} - \frac{1}{16}\right)}$
37.	(4) When final image is formed at the near $m = \frac{D}{m}$		$\frac{X}{\lambda_{\beta}} = \frac{5}{36} \times \frac{16}{3} = \frac{80}{108}$
	where D is the length distance of sistinct vision and f is the focal ength of the convex lens Here, D = 25 cm, f = 10cm	47.	$\lambda_{\beta} = \frac{108X}{80}$ (3)
	$\therefore m = 1 + \frac{25cm}{10cm} = 1 + 2.5 = 3.5$	48. 49.	(2) $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$ (3)
38.	Ultravsound are mechanical waves and they require a medium to travel whereas infrared	50. 51.	(2) NCERT(4) MgF₂ cannot used
	radiation, ultraviolet radiation, visible and X- rays are all electromagnetic waves and they do	52.	(3) S > CI > P > Si
40	not require a medium to travel.		$3p^{3}3p^{4}3p^{2}3p^{1}$
10.	electron (mass m, charge e) accelerated from rest with a voltage V volt is	53.	(3) $M = \frac{W \times 1000 \times d}{M \times W} = \frac{120 \times 1000 \times 1.15}{60 \times 1120}$
	h 1	54.	(4)
	$\lambda = \frac{1}{\sqrt{\text{meV}}}$ or $\lambda \propto \frac{1}{\sqrt{V}}$	55.	(2) $\log_{10} K_{\rm C} = \frac{{\rm nE}^6}{0.0591} = \frac{1 \times 0.591}{0.0591} = 10$
	$\therefore \lambda_1 : \lambda_2 : \lambda_3 = \frac{1}{\sqrt{V_1}} : \frac{1}{\sqrt{V_2}} : \frac{1}{\sqrt{V_3}}$ $1 1 1 1$	56.	$K_{\rm C} = 10^{10}$ (1) Stability of IIA gp carbonate increase down the gp and solubility of sulphate decrease in
	$= \frac{1}{\sqrt{100V}} \cdot \frac{1}{\sqrt{200V}} \cdot \frac{1}{\sqrt{300V}}$	57.	(2) $n = 2$
	$= 1 : \frac{1}{\sqrt{2}} : \frac{1}{\sqrt{3}}$		$mvr = \frac{nh}{2\pi} = \frac{2h}{2\pi} = \frac{h}{\pi}$
CLF	CULAR ROAD : New Nagratoli Near Women's	l College	Science Block, Ranchi Cont · 7360012022 4
GIII		- on ogo	

59. (2)
$$E_{cell} = E_{cell}^0 - \frac{0.0591}{n} \log \frac{Zn^{+2}}{Cu^{+2}}$$

70. (2)
$$P_T = P_A^0 X_A + P_B^0 X_B$$

$$\mathsf{P}_{\mathsf{T}} = 44.5 \left(\frac{\frac{60}{46}}{\frac{60}{46} + \frac{40}{32}} \right) + 88.7 \left(\frac{\frac{40}{32}}{\frac{60}{46} + \frac{40}{32}} \right)$$

$$P_{T} = 66.11 \text{mm Hg}$$

A/c to dalton low
$$P_{A}X_{A} = Y_{A}P_{T}$$
$$y_{A} = \frac{P_{A}X_{A}}{P}$$

71. (1)
$$pH = Pk_a + log_{10}\left(\frac{salt}{acid}\right)$$

 $5 = 6 + log_{10}\left(\frac{S}{A}\right)$
 $-1 = log_{10}\left(\frac{S}{A}\right)$
 $10^{-1} = \left(\frac{S}{A}\right)$
 $\left(\frac{A}{S}\right) = 10$
72. (1) (NH) SO Fe (SO) 24

72. (1) $(NH_4)_2SO_4.Fe_2(SO_4)_3.24H_2O$ is a double salt and give all the ions NH_4^+ , Fe^{3+} and SO_4^{2-} in their aqueous solution, then test of iron can be done.

73. (4)
$$\frac{\Delta T_{f_2}}{\Delta T_{f_1}} = \frac{WB_1}{WB_2} = \frac{0.25}{0.2}$$

 $WB_2 = \frac{100 \times 0.2}{0.25} = 80g$
Separated ice = $100 - 80 = 20g$

Mile
 2020
 ALL INDIA TEST SERIES
 31.03 2020
 FULL TEST F.V

 74. (3)
 E =
$$\frac{M_V}{V_F} = \frac{M}{6}$$
 8

 75. (4)
 Wit of N = $\frac{1}{5} \times \frac{40}{1000} \times 14 = 0.112g$
 80. (3)
 H = > H1 > HB > HD = NHC

 76. (3)
 A = OV = BC + EC
 B = FCC + FC + corner
 9
 0
 (3)
 H = > H1 > HB > HD = MC

 81. (2)
 B = 6 × $\frac{1}{2} + 6 \times \frac{1}{8} = \frac{15}{4}$
 A, B = $\frac{1}{14} + A, B_3$
 CH₃
 C = CH₃ - C = CH - C = C = C - C = C - C = C